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Abstract

The electric dipole moment of the muon (de
�
) is evaluated in supersymmetric

models with nonzero neutrino masses and large neutrino mixing arising from

the seesaw mechanism. It is found that if the seesaw mechanism is embedded

in the framework of a left{right symmetric gauge structure, the interactions

responsible for the right{handed neutrino Majorana masses lead to an en-

hancement in de
�
. We �nd de

�
as large as 5�10�23 ecm with a correlated value

of (g � 2)
�
' 13 � 10�10, even for low values of tan�. This should provide

a strong motivation for improving the edm of the muon to the level of 10�24

ecm as has recently been proposed.
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I. INTRODUCTION

It has long been recognized that electric dipole moments (edm) of fermions can provide

a unique window to probe into the nature of the forces that are responsible for CP violation

[1]. Experimental limits on the edm of neutron have reached the impressive level of 6�10�26

ecm [2] and have already helped constrain and sometimes exclude theoretical models of CP

violation. Currently e�orts are under way to improve this limit by at least two orders of

magnitude [3], which will no doubt have very important implications for physics beyond the

standard model. Electric dipole moment of the electron has severely been constrained by

atomic measurements in Cs (de
e
� 10�26) and T` (de

e
� 4:3� 10�27 ecm) [4]. The limits on

the muon edm on the other hand are much weaker, the present limit derived from the CERN

(g� 2) experiment [5] is de
�
� 1:1� 10�18 ecm. There has been a recent proposal to improve

this limit on de
�
to the level of 10�24 ecm [6]. In this paper we will argue that there is a strong

motivation for this proposed improvement, related to the observation of neutrino masses and

oscillations. We will show that a natural understanding of small neutrino masses with large

oscillation angles in the framework of the seesaw mechanism will lead to an enhancement

of de
�
, to values as large as 5 � 10�23 ecm, which is well within the reach of the proposed

experiment.

As for the theory of leptonic edm, in a large class of models a generic scaling law holds,

given by de
�
=de

e
' m

�
=m

e
. If such a relation is valid, even prior to any detailed calculation,

one can infer that the present upper limit on electron edm will constrain the muon edm

to be less than about 10�24 ecm. This scaling law arises due to the chiral structure of the

edm operator, which is very similar to the operator corresponding to the fermion mass.

To the lowest order in the light fermion Yukawa couplings, the edm becomes proportional

linearly to the fermion mass. In speci�c models, it may so happen that other constraints

put the electron edm itself at a much lower value; e.g., the standard model prediction for

the electron edm is � 10�41 ecm [7]. The scaling law then suggests that the corresponding

value for the muon edm would be at the level of 10�39 ecm, which is beyond the reach of

any conceivable experiment. In multi{Higgs doublet extensions of the standard model, the

dominant contribution to the leptonic edm arises from a two{loop diagram involving �V {
Higgs vertex, where V = Z;W [8]. Since such a vertex is avor universal, when converted

to the fermion edm, the above{mentioned scaling law will hold. Recently an extended Higgs

model [9] has been analyzed, where it has been shown that for large values of the parameter

tan � (ratio of the two Higgs vacuum expectation values), the one{loop diagram that scales

as m
�
�2
�
, where �

�
is the muon Yukawa coupling, can compete with the two{loop diagram

[8], leading to order one violation of the scaling law.

In the supersymmetric extension of the standard model (MSSM), under the usual as-

sumptions about supersymmetry breaking terms, i.e., universality of scalar mass terms and

proportionality of the trilinear A terms with the corresponding Yukawa couplings, a similar

scaling law would hold. A leading contribution to leptonic edm in such models is the one{

loop diagram involving the bino virtual state and a complex A
``
term. The assumption of

proportionality of A terms then implies that the above mentioned scaling relation remains.

A similar remark holds when the chargino diagram is considered, with a complex � term,

again due to the universality of the CP violating parameter. (For a discussion of edm of

electrons in MSSM and SUGRA models, see ref. [10{13].) Evaluation of these bino and
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chargino diagrams leads to a value for the muon edm of about 8 � 10�25 ecm, once the

upper limit on electron and neutron edm are satis�ed. The expected reach of a proposed

BNL experiment for the muon edm is 10�24 ecm, which is somewhat above the largest value

allowed within the MSSM.

Recent experimental evidence for neutrino masses, especially from the SuperKamiokande

atmospheric neutrino data [14], suggests that the MSSM must be extended to account for

it. A natural place for small neutrino masses is the left{right symmetric extension of the

standard model [15]. We have recently advocated a simple supersymmetric realization of

left{right symmetry (SUSYLR) which accommodates the neutrino masses via the seesaw

mechanism [16]. Our proposal is simply to embed the MSSM into a left{right symmetric

gauge structure at a high scale v
R
� 1011�1015 GeV. The e�ective MSSM that emerges from

this model at scales below the left-right symmetry breaking scale, v
R
, is a constrained MSSM

with far fewer number of phases. In particular, it has a built{in solution to the SUSY CP

problem [17,18]. Owing to the constraints of parity symmetry, the Yukawa coupling matrices

and the trilinear A matrices become hermitian in this model. Similarly, the � term, the soft

B� parameter, and the gluino mass parameters all become real, eliminating potentially

excessive CP violation from the MSSM. Furthermore, R{Parity arises automatically in this

model as part of the gauge symmetry, since the gauge structure involves B � L symmetry.

In this paper we wish to investigate the CP violating muon edm de
�
and (g � 2)

�
in this

class of models. We will show that the interactions responsible for the Majorana masses of

the right{handed neutrinos will lead to an enhancement of de
�
. We �nd de

�
as large as 5�10�23

ecm and (g � 2)
�
as much as 13� 10�10. These values arise even for small tan � � 3. Our

main e�ect arises through the renormalization group extrapolation from the Planck scale

to the left{right scale v
R
[19]. In this interval the Yukawa couplings of the �

R
�elds which

induce their Majorana masses, as well as the associated trilinear A terms, will a�ect the soft

supersymmetry breaking parameters of the e�ective MSSM, leading to the enhancement of

de
�
. Sine the Majorana Yukawa couplings do not obey e � � universality, the scaling law

de
�
=de

e
= m

�
=m

e
is not obeyed by these new diagrams.

For concreteness, we will work within the framework of a minimal version of the high

scale SUSYLR (or SO(10)) model. It is minimal in the sense that we have only one multiplet

of Higgs �eld that gives rise to the usual Dirac fermion masses, i.e., one left-right bidoublet

� (10 in the case of SO(10)). With one such multiplet, only one Yukawa coupling matrix is

allowed in the quark sector, leading to the proportionality of the up and the down Yukawa

coupling matrices [18,20,21]. We call this up{down uni�cation. It has the consequence that

all the avor mixings vanish at the tree level. We have shown that acceptable values of the

mixing angles can arise from the one{loop diagrams involving the gluino (and the chargino),

proportional to the avor structure of the trilinear A terms. This considerably restricts the

avor and CP violating interactions in the model and makes it very predictive. The model

has been shown to lead to a consistent picture of Kaon CP violation including � and �0 and

it predicts neutron edm at the level of 10�27 ecm. The leptonic sector of the model was

investigated in Ref. [20], we shall work within that framework to calculate the edm and

(g�2) of the muon. We have veri�ed that going to non{minimal models, e.g., by employing

more than one bidoublet Higgs �eld, does not a�ect our results by much in the leptonic

sector.
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II. BRIEF OVERVIEW OF THE MODEL

Let us briey review the salient features of the minimal SUSYLR model. The electroweak

gauge group of the model is SU(2)
L
� SU(2)

R
� U(1)

B�L with the standard assignment of

quarks and leptons { left{handed quarks and leptons (Q;L) transform as doublets of SU(2)
L
,

while the right{handed ones (Qc; Lc) are doublets of SU(2)
R
. The Dirac masses of fermions

arise through their Yukawa couplings to a Higgs bidoublet �(2; 2; 0). The SU(2)
R
�U(1)

B�L
symmetry is broken to U(1)

Y
by B � L = 2 triplet scalar �elds, the left triplet � and right

triplet �c (accompanied by �� and ��c �elds, their conjugates to cancel anomalies). These

�elds also couple to the leptons and are responsible for inducing large Majorana masses for

the �
R
. An alternative is to use B � L = 1 doublets � (left) and �c (right) along with ��

and ��c instead of the � �elds. Here we shall adopt the B � L = 2 triplet option, which

allows direct couplings to the leptons and which conserve R{Parity automatically. Let us

write down the gauge invariant matter part of the superpotential involving these �elds:

W = Y
q
QT �2��2Q

c +Y
l
LT �2��2L

c

+ (fLT i�2�L + f
c
LcT i�2�

cLc) : (1)

Under left{right parity, Q $ Qc�; L $ Lc�;� $ �y, � $ �c�, along with W
SU(2)L $

W �
SU(2)R

, W
B�L $ W �

B�L and � $ ��. Here the transformations apply to the respective

super�leds. As a consequence, Y
q
= Yy

q
, Y

l
= Y

y
l
, and f = f�

c
in Eq. (1). Furthermore, the

trilinear A
q
and A

l
terms will be hermitian, gluino mass term will be real, and the supersym-

metric mass term for � (the �{term) as well as the supersymmetry breaking B� term will be

real. Departures from these boundary conditions below v
R
due to the renormalization group

extrapolation is small. The model thus provides a natural resolution to the supersymmetric

CP problem.

Below v
R
, the e�ective theory is the MSSM with the H

u
and H

d
Higgs multiplets. These

are contained in the bidoublet � of the SUSYLR model, but in general they can also reside

partially in other multiplets having identical quantum numbers under the MSSM symmetry.

Allowing for such a possibility, the single coupling matrix Y
q
of Eq. (1) describes the avor

mixing in the MSSM in both the up and the down sectors leading to the relations

Y
u
= Y

d
; Y

`
=  Y

�
D ; (2)

which we call up{down uni�cation. Here  is a parameter characterizing how much of H
u

and H
d
of MSSM are in the bidoublet �. The case of H

u;d
entirely in � will correspond to

 = 1 and tan� = m
t
=m

b
. At �rst sight the �rst of the relations in Eq.(2) might appear

phenomenologically disastrous since it leads to vanishing quark mixings and unacceptable

quark mass ratios. We showed in Ref. [18] that including the one{loop diagrams involving

the gluino and the chargino and allowing for a avor structure for the A terms, there exists

a large range of parameters (though not the entire range possible in the usual MSSM) where

correct quark mixings as well as masses can be obtained consistent with avor changing

constraints. In Ref. [18], we explored the parameter space that allowed for arbitrary squark

masses and mixings as well as arbitrary form for the supersymmetry breaking A matrix. We

found a class of solutions for large tan � � 35� 40 ( =1), and for small tan � � 4 where all

quark masses mixings and CP violating phenomena could be explained. The smaller value
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tan � requires larger values of , since  tan� = m
t
=m

b
is �xed. In this paper, we use small

tan � scenarios which is less constrained.

Since the parameter  plays a crucial role in determining the value of tan�, let us explain

its origin in an explicit high scale model. We will also show how the solution to the SUSY

CP problem can be maintained even for the case of small tan�.  arises from the mixing

of the bidoublet � with other weak doublets in the high scale theory. We assume that only

one pair of doublets, H
u
and H

d
of MSSM, remain light below v

R
. A concrete example

which also maintains automatic R{Parity of the left{right model involves the addition of

the following new �elds: �(2; 2; 2) + ��(2; 2;�2) and 

L
(3; 1; 0) + 


R
(1; 3; 0). They lead to

the following new terms in the superpotential:

Wnew = ��(��� +�c ��c) + ���
2 + �

�
���+ �
(


2
L
+ 
2

R
)

+ �1 [Tr(��
c�) + Tr(����)] + �2

h
Tr(�� ��c�) + Tr(� ���)

i

+ �3Tr( ��
c


R
�c + ��


L
�) + �4Tr(�
R

�� + ��

L
�) : (3)

The coupling and the mass parameters in Eq. (3) are guaranteed to be real by parity

symmetry, P , de�ned earlier in combination with the charge conjugation symmetry C under

which all super�elds (except � and �) transform as 	! 	c, where 	 stands for a relevant

super�eld in the theory; the W
L
! W

R
and B ! �B. The �elds � and � transform as

follows: � ! �2��
T �2 and � ! �2�

T �2. We will assume that the supersymmetry breaking

terms respect only P and not C.

It can be shown (see e.g., Ref. [26]) that this model has a ground state where h

R
i �

h�ci =
D
�c

E
� v

R
and h


L
i = h�i =

D
��
E
= 0. The � super�eld contains an H

u
{like

MSSM doublet and �� contains an H
d
{like one. Once the right handed gauge symmetry is

broken by �c vev, the doublets in � and those in � and �� mix via a matrix, which is given

by Wmass = ( �
u

�
u
)Mdoublet

�
�
d

�
d

�
, where

Mdoublet =

�
�
�

�1vR
�2vR ��

�
: (4)

Mdoublet being an asymmetric matrix leads to light eigenstates

given by H
u

= cos �1�u
+ sin �1�u and H

d
= cos �2�d

+ sin �2�d. Here �1 is the

�
u
� �

u
mixing angle, which is unrelated (due to the asymmetry of the matrix) to �2, the

�
d
� �

d
mixing angle. This gives  = cos �1

cos �2
, which can take any arbitrary value.

We note that due to the combination of P and softly broken C symmetry, all dimension

four couplings are real, leading to a solution to the SUSY CP problem. To see this, note that

due to these symmetries, all entries in the mass matrix of Eq. (4) are real, so that the e�ective

� term of MSSM stays real. (With parity symmetry alone, the �1;2 couplings in Eq. (4) could

be complex, which would make the e�ective � term of the MSSM complex.) Furthermore,

since only the dimension 3 and 2 terms of the SUSY breaking Lagrangian are assumed to

respect P, but not C, such a scenario is completely stable under renormalization. (This

scheme is distinct from scenarios where CP symmetry is imposed on the MSSM Lagrangian

at a high scale to solve the SUSY CP problem [22]. Since the gauge structure of MSSM

does not have parity symmetry, the phases of the soft SUSY breaking terms will have to be

small in that case.)
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Unlike the large tan � case (corresponding to  = 1), we are �nding that CP violation

in the quark sector has to arise from soft terms. We have analyzed this possibility in Ref.

[18] and shown its consistency. We are pursuing this possibility further [23]. An immediate

outcome of this scenario for hadronic CP violation is that although there is KM type CP

violation, generically it tends to be sub{leading to SUSY CP violation.

In the absence of the 

R
�eld in Eq. (3), the doubly charged �eld �c++ in �c (as well

as �c�� in �c) will remain massless { it will pick up mass only of order the weak scale, or

of order v2
R
=Mstring, if non{renormalizable operators are included. Inclusion of 


R
(and its

left{handed partner 

L
) lifts the mass of �c++ to the scale v

R
[26]. We will analyze two

cases, one with the inclusion of 

L;R

�elds, and one without. In the latter case, we will take

the mass of �c++ to be � v2
R
=Mstring.

III. LEPTONIC CP VIOLATION AND MUON EDM

To discuss CP violation in the lepton sector, we need to specify the leptonic superpoten-

tial W
`
and the most general soft breaking Lagrangian, L`

soft, in the lepton superpartners.

The leptonic W
`
is given in Eq. (1), L`

soft is given by:

�L`

soft = m2
LL

~Ly ~L + m2
RR

~Lc

y ~Lc +
h
A
l

~L� ~Lc + A
f
(~L~L� + ~Lc ~Lc�c) + H:c:

i
(5)

To generate a nonvanishing muon edm, one needs a complex valued (A
l
)22 and/or complex

soft mass-squared terms. But above the scale where the parity symmetry is valid, A
l
is

hermitian and therefore its diagonal elements are all real. This element can however be

complex due to radiative corrections below the parity breaking scale. There are two ways

this can happen: (i) if only parity symmetry is broken but gauge symmetry SU(2)
L
�

SU(2)
R
� U(1)

B�L is unbroken at the string scale by introduction of parity odd singlets

[24]; (ii) if both parity and the left-right gauge symmetry are broken, but some remnant

of the f and A
f
couplings remain below the v

R
scale. This has been shown to happen in

supersymmetric left-right models with minimal �eld content [25]. In the explicit version

described in Sec. II, if the 

L;R

�elds are absent, the �c++ �eld from �c will have a mass

of order v2
R
=Mstring � 1012 GeV. So between Mstring and M�c++, the e�ects of f and A

f

couplings will be felt, and (A
l
)22 can become complex. This will also induce avor violating

complex soft mass{squared terms proportional to A
f
Ay
f
, even if we start with diagonal soft

masses at Mstring.

In case (i), the way (A
l
)
ij
become complex is as follows. Below the D-parity (discrete

parity) breaking scale, Mstring, only �
c's (and not �'s) contribute to renormalization group

equations (RGE) describing the evolution of (A
l
)
ij
since the �'s acquire masses of order

Mstring. The RGE are given in the Appendix for this case. We have, from Eq. (25) of

Appendix,

dA
l

dt
/ 1

16�2
(4A

f
f yY

l
+ 2� yA

l
) : (6)

The �rst term on the RHS of Eq. (6) will introduce phase in A
l
. Note that A

f
is not

constrained to be hermitian at the string scale by parity symmetry (unlike A
l
, which must

6



be hermitian at Mstring). We will allow for complex entries in the 2 � 3 block of A
f
in our

analysis.

Below the D{parity breaking scale, the soft mass parameters m2
LL

and m2
RR

will evolve

di�erently. In particular,m2
RR

will feel the e�ects of f and A
f
couplings. In order to explain

the large oscillation angle needed for the atmospheric neutrino data, we will �nd that f23
is not much smaller than f33. Thus (Af

)23 is not much smaller than (A
f
)33. Consequently,

(m2
RR

)23 will become large and complex. This is the main source of the enhanced edm of

the muon in the model. This qualitative feature becomes more transparent if we examine

the RGE for m2
RR

(see Eq. (27) of Appendix). It has the form:

dm2
RR

dt
/ 1

16�2
(2A

f
Ay
f
) : (7)

It is clear from Eq.(7) how (m2
RR

)23 becomes large and complex.

The dominant contribution to the edm of muon arises from a diagram which has right

and left{handed muon in the external legs and a lighter stau inside the loop. It utilizes the

above{mentioned 2 � 3 mixing which is large and complex. For example, the diagram can

have �
L
� ~�

R
and ~�

L
� �

R
vertices along with the stau mass ip inside the loop or it can

involve just the �
L
� ~�

R
and ~�

R
� �

R
vertices. It might be suspected that similar diagrams

will also induce large edm for the electron. However, in this model, since f13 and f12 are

much smaller, such contributions are negligible. Essentially, we have a scenario where e� �
avor symmetry is broken by a large amount by the f and A

f
terms. As a result the scaling

law alluded to in the introduction does not hold. If we assume, as we do in our analysis,

the existence of phases only in the 2 � 3 block of the A
f
matrix, or if A

f
has negligible

entries in its �rst row and column, no appreciable edm for the electron gets induced due to

mixing e�ect. Below v
R
, we have only the MSSM �eld content. Due to the new f couplings

above the v
R
scale, the ~�1 mass is lower than usual SUGRA model for the same values of the

parameter space (i.e., m0, m1=2, A0, tan �). This is why the diagram involving the ~� tends

to dominate in de
�
.

In case (ii), we use the fact that in the minimal SUSYLR model (without 

L;R

), �c++

and �c�� remain below the v
R
scale; therefore their couplings to the charged fermions via

RGE's lead to imaginary parts in (A
l
)22 by an amount

(fA
y
f
Yl)22

16�2
. Again the soft masses

become complex in the same fashion as in case (i). These �elds get decoupled at somewhat

lower scale � 1011 GeV, below which the spectrum is that of MSSM.

IV. RESULTS

Let us �rst discuss the neutrino mass �ts in this model. We start with a basis where the

charged leptons masses are diagonal and Dirac neutrino masses are given by

M
�
D =  tan �M

l
; (8)

where M
l
= Diag(m

e
; m

�
; m

�
). The light Majorana neutrino mass matrix is then given by:

M
�
=
2 tan2 �

v
R

M
l
f�1M

l
; (9)

7



where f is the right{handed Majorana Yukawa coupling matrix.

In our �t, we �rst use the small angle MSW oscillations solution for the solar neutrino

de�cit with �m2
e�
' (0:3� 1)� 10�5 eV2 and 2� 10�3 � sin2 2�

e�
� 2� 10�3. We also use

the �
�
! �

�
oscillation scenario to explain the observed de�cit in the ux of muon neutrinos

from the atmosphere [14]. The mass splitting is taken to be �m2
��
' (0:1� 1) � 10�2 eV2

and the oscillation angle to be sin2 2�
��
' 0:8� 1.

For tan� = 3, we �nd a good �t to the solar and atmospheric neutrino data by choosing

f at Mstring to be

f =

0
B@
�1:00� 10�4 8:8� 10�4 �2:2� 10�5

8:8� 10�4 �1:3� 10�2 1:03� 10�1

�2:4� 10�5 1:03� 10�1 �1:59

1
CA : (10)

The resulting neutrino masses at v
R
= 1015:3 GeV are: (6:27� 10�6; 2:5� 10�3; 5:2� 10�2)

eV. The leptonic mixing matrix is given by:

U =

0
B@

�0:99 4:2� 10�2 �8:4� 10�5

3:1� 10�2 0:74 �0:67
�2:9� 10�2 �0:71 �0:71

1
CA : (11)

U21 is the mixing angle relevant for solar neutrino oscillations. (Our notation is such that

UM
�
UT = Mdiagonal

�
.) This choice leads to a simultaneous explanation of the solar and

atmospheric neutrino anomalies. Note that we have taken all Yukawa couplings to be real,

consistent with our assumption that C and P symmetry are respected by d = 4 terms.

It is possible to �t the large angle oscillations solution to satisfy the solar neutrino de�cit.

In that case we take f matrix is at v
R
� 1015:6 GeV to be

f =

0
B@
�1:77� 10�7 �1:42� 10�6 0

�1:42� 10�6 �3:9� 10�3 �6:4� 10�2

0 �6:4� 10�2 �1:28

1
CA : (12)

With these values the neutrino masses are (1:7� 10�3; 2:0� 10�3; 3:4 � 10�2) eV and the

corresponding leptonic mixing matrix is:

U =

0
B@

�0:89 �3:3� 10�1 �4:0� 10�1

�4:5� 10�1 0:63 0:63

�2:8� 10�2 0:72 �0:69

1
CA : (13)

We use the one{loop Yukawa and two{loop gauge RGE to extrapolate all parameters

between the string scale and the v
R
scale. Since the new couplings f a�ect the RGE for the

leptonic Yukawas, one needs to make sure that the charged lepton masses come out to be

correct at the weak scale. For simplicity we choose a universal scenario, i.e., all the scalar

masses are given by a common mass parameter m0 at the string scale. We also assume a

common trilinear mass A0(�Yl
) for all generations. For A

f
we use a structure similar to f .

But we do not impose A
f
/ f . We demand electroweak symmetry to be broken radiatively.

In case (i), where parity is broken at Mstring, � �elds get decoupled and only the �c �elds

contribute to the RGE for soft masses. Consequently the renormalized right handed slepton

masses get lowered due to the presence of the new couplings f . Furthermore, A
l
will pick

8



up o�{diagonal elements and will lose its hermitian structure through renormalization. The

�c �elds get decoupled at the left-right breaking scale v
R
, below which we use the RGE

corresponding to the MSSM degrees.

The EDM for a spin 1=2 fermion is given by the following e�ective Lagrangian:

L
f
= �1

2
d
f

� �
��
5 F

�� : (14)

In this model, we have only the neutralino-slepton loop contribution to the edm of muon.

This contribution is given as [12]:

de
�
=e =

�
em

4�sin2�
w

6X
i=1

4X
i=1

Im(�
�ik

)
~m
�
0
i

~m2
k

Q
�
B(

~m2
�
0
i

~m2
k

) (15)

where �
�ik

= [�
p
2(tan �

W
(Q

�
�T3�)X1i+T3�X2i)�

�
L2k+x�X3i�

�
R2k](

p
2 tan �

W
Q
�
X1i�R2k�

x
�
X3i�

�
L2k) and x� =

m�p
2mW cos�

. X diagonalizes the neutralino mass matrix, XTM
�
0X =

diag(m
�
0
1
; m

�
0
2
; m

�
0
3
; m

�
0
1
4). Here �

L;R
are 6 � 3 matrices given by ~q

L
= �

L;R
~q and B(r) =

1
2(r�1)2 (1 + r + 2rlnr=(1 + r)).

We �rst analyzed the case where A
f
and f are proportional. It still allows for an overall

phase in A
f
, consistent with P invariance. In this case de

�
is highly suppressed, de

�
� 10�26

ecm. The reason is that with only one matrix structure f , when the e�ective (A
l
)22 is

computed in the original gauge bases, it will remain real. Small contribution will arise in

the mixed � � � EDM operator, which can lead to a small value of de
�
since the physical

� is a linear combination of the two states. However, this � � � mixing turns out to be

small. As soon as the proportionality A
f
/ f is relaxed, de

�
becomes much larger. We

have analyzed the case where A
f
and f are non{proportional, but the magnitudes jA

f
j
ij
are

proportional to jf j
ij
. We allow phases of order 1 in the (23), (32) and (33) elements of A

f

matrix, while keeping f
ij
real. In this case we �nd the maximum muon edm to be 7� 10�25

ecm. When this assumption of proportionality of the magnitudes is relaxed, even larger

value of de
�
results. We give an explicit example for this case below. It should be mentioned

that large values of A
f
reduces stau mass while it increases de

�
. So in exploring regions of

large de
�
, we need to consider the experimental limits on stau. In our calculation we take

the lightest stau mass (~�1) to be � 80 GeV (which is above the current experimental limit

of 70 GeV [27] at
p
s = 202 GeV). In Fig. 1, we exhibit the case which has small angle

oscillation solution. The large angle solution, however, does not show any di�erence. In Fig.

1 we plot the muon edm parameter k
�
� Log10[

d
e
�

1�10�23ecm ] for case (i) for tan� = 3. This

corresponds to D{parity broken at the string scale, but left{right gauge symmetry broken

at v
R
' 1015:3 GeV. At the string scale (taken to be 1017 GeV), we have assumed (in GeV

units throughout)

A
f
=

0
B@
�2� 10�3 1� 10�2 0

1:0� 10�2 �1� 102ei�=2 4:7� 102ei�=2

0 4:7� 102ei�=2 3:3� 102e�i�=2

1
CA : (16)

We put A0 = �120 GeV (with A
l
= A0Yl

). The solid line in Fig. 1 is drawn for m0=160

GeV. The extreme left corner of the curve corresponds to lighter stau mass (~�1)=82 GeV. At

the same spot in the parameter space, the lightest chargino (��1 ) and the lightest neutralino

9



masses (�01) are 106 GeV and 52 GeV respectively. We can see that the muon edm can be

as large � 3 � 10�23 ecm in this case. The dotted line is drawn for m0=170 GeV for the

same set of input values.

In Fig. 2 we plot the muon edm parameter k
�
, for case (ii) with tan� = 3 and m0 = 160

GeV. This case corresponds to �c++ surviving below v
R
. We assume the scale at which it

decouples to be 1012 GeV. We have used the universal scenario for the slepton masses and

have used the same f matrix as before. At the string scale, we take (in GeV)

A
f
=

0
B@
�2� 10�3 1� 10�2 0

1:0� 10�2 �1� 101ei�=2 3:0� 102ei�=2

0 3:0� 102ei�=2 1:1� 102e�i�=2

1
CA : (17)

We take A0 = 0 GeV. The extreme left corner of the curve in Fig. 2 corresponds to lighter

stau mass (~�1) mass of 80 GeV. At the same spot, as before, the �
�
1 and the �01 masses (�

0
1)

are 106 GeV and 52 GeV respectively. As can be seen from the �gure, large values of de
�
are

possible, as large as 5� 10�23 ecm.

We have assumed non{proportionality of A
f
and f in the preceding two examples. We

will argue that this is not unnatural. First of all, there are no strong experimental hints that

suggest proportionality of the two (unlike the case of A
l
and Y

l
). Second, we have proposed

recently a model based on horizontal gauge symmetry which allows for all parameters of

the soft breaking sector to be arbitrary, subject only to the constraints of the horizontal

symmetry H [28]. The symmetry H was taken to be SU(2)
H
� U(1)

H
, with the �rst two

generations of fermions falling into SU(2)
H
doublets and the thrid generation into singlets.

The �rst two generations have U(1)
H
charges of �1, while the third generation is neutral.

H is spontaneously broken by a pair of doublet [�(+1); ��(�1)] and singlet [�(+1); ��(�1)]
scalars �elds whose vev's are below the string scale. We denote �

�
� h�i =Mstring, �� �

h�i =Mstring with �
�
� 1=7; �

�
� 1=25. The e�ective Yukawa couplings involving the light

two generations will be proportional to powers of �
�
and �

�
. The U(1)

H
also alleviates

potential problems with D{terms associated with horizontal symmetries.

Within the SU(2)
H
� (U1)

H
model, it is not necessary to assume universality of scalar

masses or proportionality ofA terms and the Yukawa couplings. For the �rst two generations,

the scalar masses will be approximately equal, owing to the non{Abelian sector of the

horizontal symmetry. With the horizontal charge assignment given above, we can write

down the most general H{symmetric Yukawa couplings, soft mass terms and A terms.

Since the A terms become hierarchical, all FCNC constraints can be satis�ed, even without

proportionality assumption [28].

We will now present an example for the muon edm within this horizontal symmetric

framework. We will embed the model of Ref. [28] into left{right symmetry at a high scale.

Unlike in Ref. [28], all the CKM mixing will vanish at tree{level now. In a basis where the

Yukawa couplings are diagonalized, the Majorana neutrino coupling can be written in the

following hierarchical form:

f =

0
B@
f11�

4
�
=�2

�
f12�� f13�

2
�
=�

�

f12�� f22�
2
�

f23��
f13�

2
�
=�

�
f23�� f33

1
CA : (18)

The bilinear soft mass matrix and the A matrix are given as:

10



m2
RR

=

0
B@

m2
0 m2

0(x12)�� m2
0(x13)�

2
�
=�

�

m2
0(x12)�� m2

0 m2
0(x23)��

m2
0(x13)�

2
�
=�

�
m2

0(x23)�� m2
33

1
CA ;

A = A0

0
B@
(y11)�

4
�
=�2

�
(y12)�� (y13)�

2
�
=�

�

(y21)�� (y22)�
2
�

(y23)��
(y31)�

2
�
=�

�
(y32)�� y33

1
CA : (19)

We also have m2
LL

= m2
RR

. This structure for A hold for both A
l
and A

f
(as well as for A

q
).

At Mstring we will take Al
to be hermitian. In order to �t the experimental values of quark

and lepton masses we choose �
�
= 1=7 and �

�
= 1=25. In this new scenario, the muon edm

can be enhanced to 5 � 10�23. We have taken soft masses for all the Higgs �elds to be 85

GeV. In Fig. 3, we exhibit the results for de
�
for one such example. To generate this plot,

the input values we have used at the string scale are as follows:

m2
RR

= 852

0
B@

1 1
2
�
�

1
7
�2
�
=�

�

1
2
�
�

1 �
�

1
7
�2
�
=�

�
�
�

1:8

1
CA ;A

l
= 30

0
B@
�4
�
=�2

�

1
2
�
�

1
3
�2
�
=�

�

1
2
�
�

1
3
�2
�

1
3
�i�=3�

�

1
3
�2
�
=�

�

1
3
��i�=3�

�
�4

1
CA : (20)

f =

0
B@
�1:01� 10�4 9:0� 10�4 �1:4� 10�3

9:0� 10�4 �1:2� 10�2 1:04� 10�1

�1:4� 10�3 1:04� 10�1 �1:59

1
CA ;

A
f
= 500

0
B@
��4

�
=�2

�

1
3
�
�

�1
7
�2
�
=�

�

1
3
�
�

�3�i�=2�2
�

4�i�=2�
�

�1
7
�2
�
=�

�
4�i�=2�

�
0:6��i�=2

1
CA : (21)

Note that we have allowed for all coe�cients to be order one, consistent with the horizontal

symmetry. (This is also true for the f matrix elements.) The (13); (31) elements of the f

are no longer very small like our previous example because of the symmetry requirement.

The choice of f matrix in this case corresponds to the following light neutrino masses:

(6:27� 10�6; 2:9� 10�3; 4:4� 10�2) eV. The corresponding leptonic mixing matrix is:

U =

0
B@

�0:99 4:2� 10�2 �3:2� 10�3

3:2� 10�2 0:70 �0:71
�2:9� 10�2 �0:74 �0:66

1
CA : (22)

Note that in this example �
e
� �

�
oscillation explains the solar neutrino data via small

angle MSW oscillation. �
�
� �

�
oscillation explains the atmospheric neutrino data. We have

found that by varying the order one couplings slightly, it is also possible to obtain a di�erent

scenario whre �
e
� �

�
oscillation is relevant for solar neutrinos, while �

�
� �

�
oscillations

with m
��
� m

��
explains the atmospheric neutrino data [28]. The predictions for de

�
is not

much altetered in such a scenario.

Now we turn to the evaluation of (g � 2) of the muon. In MSSM, the (g � 2)
�
gets

contribution from the chargino and neutralino diagrams [29{32]. The relevant expressions

can be found in Ref. [31]. In this model we have contributions from both these loops. The

chargino contribution is somewhat bigger than the neutralino loop. We �nd the magnitude

11



of (g � 2)
�
to be (6 � 10)� 10�10 for the curves in Figs. 1 and 2 and (8 � 13)� 10�10 for

the model with horizontal symmetry given in Fig. 3.

As for other rare processes, the branching ratio of � ! � is one to two orders of

magnitude below the present experimental limit. Since this process cnnot be made much

smaller, it will be of great interest to improve the present limit by two orders of magnitude,

which does not appear to be out of question. In all cases that we studied, the edm for

electron is of order 10�28 ecm. As for �! e, it is three to four orders of magnitude smaller

than current limits for cases (i) and (ii), and one order of magnitude smaller than current

limits in the case of horizontal symmetry.

In conclusion, we have shown that in supersymmetric extensions of the stanadard model

that accommodates small neutrino masses via the seesaw mechanism, there is an enhance-

ment of the muon electric dipole moment. Interactions responsible for the generation of

Majoran masses for the right{handed neutrinos are responsible for this enhancemnt through

renormalization group e�ects. We have found values of de
�
as large as 5 � 10�23 ecm. Our

�nding should provide a strong motivation to improve the limit of de
�
to the level of 10�24

ecm, as has recently been proposed. Probing de
�
at this level could reveal the underlying

structure responsible for CP violation as well as for the generation of neutrino masses.

V. ACKNOWLEDGMENTS

One of the authors (R.N.M) would like to thank K. Jungman for discussions on the

present ideas for the searches for muon edm. K.S.B is thankful to the Theory Group at

Fermilab where part of this work was done for its warm hospitality. The work of K.S.B is

supported by Department of Energy Grant No. DE-FG03-98ER41076 and by a grant from

the Research Corporation. B.D is supported by National Science Foundation Grant No.

PHY-9722090. R.N.M is supported by NSF Grant No. PHY-9802551.

12



REFERENCES

[1] For reviews, see: S. Barr and W. Marciano, in CP violation, ed. by C. Jarlskog (World

Scienti�c, 1988); W. Bernreuther and M. Suzuki, Rev. Mod. Phys. 63, 313 (1991).

[2] I. S. Altarev et al., Phys. Lett. B 276, 242 (1992); K. F. Smith et al., Phys. Lett. B234,

191 (1990); P. G. Harris et al., Phys. Rev. Lett. 82, 904 (1999).

[3] R. Golub and S. Lamoreaux, Proceedings of the Workshop on Baryon instability and

Neutron-Anti-Neutron Oscillation, ed. Y. Kamyshkov, (1996).

[4] E. Commins et al., Phys. Rev. A 50, 2960 (1994); K. Abdullah et al., Phys. Rev. Lett.

65, 2347 (1990).

[5] J. Bailey et al., J. Phys. G4, 345 (1978).

[6] Y. Semertzidis et al., E821 Collaboration at BNL, AGS Expression of Interest: Search

for an Electric Dipole Moment of the Muon.

[7] F. Hoogeveen, Nucl. Phys. B341, 322 (1990); I.B. Khriplovich and M. Pospelov, Sov.

J. Nucl. Phys. 53, 638 (1991).

[8] S. Barr and A. Zee, Phys. Rev. Lett. 65, 21 (1990); Erratum, ibid: 65, 2920 (1990).

[9] V. Barger, A. Das and C. K. Kao, Phys. Rev. D55, 7099 (1997).

[10] J. Ellis, S. Ferrara and D.V. Nanopoulos, Phys. Lett. B114, 231 (1982); J. Polchinski

and M. Wise, Phys. Lett. 125B, 393 (1983); W. Buchmuller and D. Wyler, Phys. Lett.

121B, 321 (1983); F. Aguila, M. Gavela, J. Grifols and A. Mendez, Phys. Lett. B126,

71 (1983); ibid. B129, 473 (1983) (E); J.-M. Gerard, W. Grimus, D.V. Nanopoulos and

A. Raychaudhuri, Nucl. Phys. B253, 93 (1985); E. Franco and M. Mangano, Phys. Lett.

B135, 445 (1984); A. Sanda, Phys. Rev. D32, 2992 (1985); M. Dugan, B. Grinstein

and L. Hall, Nucl. Phys. B255, 413 (1985); W. Bernreuther and M. Suzuki, Ref. [1].

[11] P. Nath, Phys. Rev. Lett. 66, 2565 (1991); Y. Kizhukuri and N. Oshimo, Phys. Rev.

D45, 1806 (1992); D46, 3025 (1992); R. Garisto and J. Wells, Phys. Rev. D55, 611

(1997).

[12] T. Ibrahim and P. Nath, Phys. Lett. B418, 98 (1998); Phys. Rev. D57, 478 (1998);

Phys. Rev. D58, 111301 (1998);

[13] T. Falk and K. Olive, Phys. Lett. B439, 71 (1998); S. Barr and S. Khalil, Phys. Rev.

D61, 035005 (2000); T. Falk, K. Olive, M. Pospelov and R. Roiban, Nucl. Phys. B560, 3

(1999); M. Brhlik, G. Good, and G. Kane, Phys. Rev. D 59, 115004 (1999); A. Bartl, T.

Gajdosik, W. Porod, P. Stockinger and H. Stremnitzer, Phys. Rev.D60, 073003 (1999);

S. Pokorski, J. Rosiek and C. A. Savoy, Nucl. Phys. B570, 81 (2000), E. Accomando,

R. Arnowitt and B. Dutta, Phys. Rev. D61, 115003 (2000).

[14] The Super-Kamiokande Collaboration, Phys. Rev. Lett. 81, 1562 (1998).

[15] J.C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R.N. Mohapatra and J.C. Pati,

Phys. Rev. D11, 566, 2558 (1975); G. Senjanovi�c and R.N. Mohapatra, Phys. Rev.

D12, 1502 (1975).

[16] M. Gell-Mann, P. Rammond and R. Slansky, in Supergravity, eds. D. Freedman et

al. (North-Holland, Amsterdam, 1980); T. Yanagida, in Proc. KEK workshop, 1979

(unpublished); R.N. Mohapatra and G. Senjanovi�c, Phys. Rev. Lett. 44, 912 (1980).

[17] R.N. Mohapatra and A. Rasin, Phys. Rev. D 54, 5835 (1996).

[18] K.S. Babu, B. Dutta and R.N. Mohapatra, Phys. Rev. D 60, 095004 (1999); ibid D61,

091701R (2000).

[19] L. Hall, V. Kostelecky and S. Raby, Nucl. Phys. B267, 415, (1986); F. Gabbiani and A.

13



Masiero, Nucl. Phys. B322, 235 (1989); N. Polonsky and A. Pomarol, Phys. Rev. Lett.

73, 2292 (1994); R. Barbieri, L. Hall and A. Strumia, Nucl. Phys. B445, 219 (1995);

T.V. Duong, B. Dutta and E. Keith, Phys. Lett. B378, 128 (1996); J. Hisano and D.

Nomura, Phys. Rev. D59, 116005 (1999).

[20] K.S. Babu, B. Dutta and R. N. Mohapatra, hep-ph/9904366, Phys. Lett. 458, 93 (1999).

[21] C. Hamzaoui, M. Pospelov and M. Toharia, Phys. Rev. D59, 095005 (1999).

[22] K.S. Babu and S.M. Barr, Phys. Rev. Lett. 72, 2831 (1994). G. Eyal and Y. Nir, Nucl.

Phys. B528, 21 (1998).

[23] K.S. Babu, B. Dutta and R.N. Mohapatra, work in progress.

[24] D. Chang, R.N. Mohapatra and M.K. Parida, Phys. Rev. Lett. 52, 1072 (1984).

[25] C. Aulakh, A. Melfo and G.Senjanovi�c, Phys. Rev. D57, 4174 (1998); Z. Chacko and

R. N. Mohapatra, Phys. Rev. D 58, 015001 (1998).

[26] C. Aulakh et al. Ref. [25].

[27] ALEPH Collaboration, ALEPH contribution to the 2000 winter conference, ALEPH-

2000-012, Conf-2000-009.

[28] K.S. Babu and R.N. Mohapatra, Phys. Rev. Lett. 83, 2522 (1999).

[29] J. Grifolis and A. Mendez, Phys. Rev. D26, 1809 (1982); J. Ellis, J. Hagelin and D.V.

Nanopoulos, Phys. Lett. B116, 283 (1982); R. Barbieri and L. Maiani, Phys. Lett.

B117, 203 (1982); D. Kosower, L. Krauss and N. Sakai, Phys. Lett. B133, 305 (1983);

T. Yuan, R. Arnowitt, A. Chamseddine and P. Nath, Z. Phys. C26, 407 (1984); J.

Lopez, D. Nanopoulos and X. Wang, Phys. Rev. D49, 366 (1994).

[30] U. Chattopadhyay and P. Nath, Phys. Rev. D53, 1648 (1996).

[31] M. Carena, G. Giudice and C. Wagner, Phys. Lett. B390, 234 (1997).

[32] T. Moroi, Phys. Rev. D53, 6565 (1996); F. Borzumati, G. Farrar and N. Polonsky, Nucl.

Phys. B555, 53 (1999), G-C. Cho, K. Hagiwara and M. Hayakawa, hep-ph/0001229.

14



VI. APPENDIX

In this Appendix we give the renormalization group equations appropriate for the mo-

mentum range between Mstring and vR for the case where parity is broken at Mstring.

df

dt
=

1

16�2
[�4�(7�

R
+
9

2
�
B�L)1 + 2f f y + 4Y

l
Y
y
l
+ Tr(f f y)]f ; (23)

dY
l

dt
=

1

16�2
[�4�(3�

R
+ 3�

L
+
3

2
�
B�L)1+ 2f f y + 4Y

l
Y
y
l
+ Tr(3Y

q
Y

q

y +Y
l
Y

l

y)]Y
l
; (24)

dA
l

dt
=

1

16�2
[�4�(3�

R
+ 3�

L
+
3

2
�
B�L)Al

(25)

+ 8�(3�
R
M

R
+ 3�

L
M

L
+
3

2
�
B�LMB�L)Yl

+ 4A
l
Y
y
l
Y

l
+ 8Y

l
Y
y
l
A
l
+ 2f f yA

l
+ 4A

f
f yY

l

+ 2Tr(A
l
Y
y
l
)Y

l
+ Tr(Y

l
Y
y
l
)A

l
+ 6Tr(A

q
Yy

q
)Y

l
+ 3Tr(Y

q
Yy

q
)Y

l
];

dA
f

dt
=

1

16�2
[�4�(7�

R
+
9

2
�
B�L)Af

+ 8�(7�
R
M

R
+
9

2
�
B�LMB�L)f (26)

+ 8A
l
Y
y
l
f + 4Y

l
Y
y
l
A
f
+ 2A

f
f yf + 4f f yA

f

+ 2Tr(A
f
f y)f + Tr(f f y)A

f
];

dm2
RR

dt
=

2

16�2
[�4�(3=2�

B�LM
2
B�L + 3�

L
M2

L
) (27)

+
1

2
((Y

l
Y
y
l
+ f f y)m2

RR
+m2

RR
(Y

l
Y
y
l
+ f f y) + 2(Y

l
m2

RR
Y
y
l
)

+ 2(fm2
RR
f y +m2

�Yl
Y
y
l
+m2

�cf f
y + A

l
Ay
l
+ A

f
Ay
f
))]:
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FIG. 1. k
�
(� Log10[

d
e
�

1�10�23ecm ]) is plotted against m1=2 for tan�=3 for case (i). The solid line

is for m0 = 160 GeV and the dotted line is for m0 = 170. The other inputs are described in the

text.
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FIG. 2. k
�
(� Log10[

d
e
�

1�10�23ecm ]) is plotted against m1=2 for tan�=3 for case (ii). m0 is 160

GeV. The other inputs are described in the text.
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FIG. 3. k
�
(� Log10[

d
e
�

1�10�23ecm ]) is plotted against m1=2 for tan�=3 for the model with hori-

zontal symmetry. m0 is 85 GeV. The other inputs are described in the text.
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